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ABSTRACT
A general overview on quantum similarity and applications to QSAR
is presented. The concepts regarding quantum similarity from its
theoretical foundation and consecutive development, involving
mathematical formulation and similarity measures, are presented
and complemented with application examples. The practical part,
based on the well-known Crammer 31 steroids set, covers ap-
proximate quantum similarity calculations, molecular superposi-
tion, and statistics. In this way, the reader will find both basic
general information and applicability of quantum similarity.

Introduction
Since the middle of the nineteenth century,1 several
authors have studied structure-property relationships.
Today known as quantitative structure-activity relation-
ships (QSAR), this field has generated a large amount of
literature. For example, see the contributions in references

2 and 3 Not long ago, a more general application land-
scape emerged from initial QSAR ideas, providing the
concept of quantitative structure-property relationships
(QSPR).4-6 More recently, the conceptual and practical use
of quantitative structure-toxicity relationships (QSTR) has
been frequently appearing in current literature.7

Since 1970, one of us (R.C.-D.) has been interested in
the QSPR field.8 Such an interest has promoted the first
work in the field of molecular quantum similarity (MQS).9

In papers associated with the initial development of the
MQS ideas, some crude, graph-oriented QSPR examples
were provided along with the theoretical background.10 A
clear picture was emerging from the steady development
of MQS studies. The application of geometry attached to
quantum mechanics, along with the quantum mechanical
postulates,11 allowed an extension of quantum theory,
within practical chemical problems, into a set of proce-
dures possessing a large applicability in many chemical
fields.12 Around 1985, the use of MQS to QSPR and QSAR
was well-founded, both in theory and practice.13 A large
amount of work has been performed to obtain a new
theoretical QSPR point of view and to establish coherent
mathematical and physical support14 for both MQS and
the application of the described formalism. When the
development of MQS reached a steady pace, a volume was
published15 in which a summary of the applications, as
well as new developments, of MQS measures (MQSM)
could be found.

Among all developments, the most important one has
been the description of a fundamental quantum QSPR
(QQSPR or Q2SPR) equation’s existence, which also dem-
onstrates that the empirical QSPR models can be generally
founded into a well-defined relationship16 of quantum
mechanical origin.

This Account consists of a theoretical introduction to
the QS field, followed by an application example.

Theoretical Background
The Role of the Quantum Mechanical Density Function
(DF). Perusing old literature on quantum mechanics, such
as the book by von Neumann,17 we found the old Born
idea,18 also developed by Dirac.19 Such a proposal admits
that any microscopic system wave function set, conve-
niently transformed into a square module, produces a set
of probability density functions (DFs), and it is this DF
the adequate tool that has to be used for interpreting the
experimental observable behavior of particle systems, such
as atoms and molecules.

This statistical fundamental for the interpretation of
quantum mechanics has to be considered the basic tool
of the theory to be used in studies concerning chemical
problems. However, such a DF character seems to possess
a secondary role in the application of quantum mechanics
in chemistry. Maybe this quantum mechanical DF ancil-
lary position has somehow caused, through the chemical
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Universitat Autònoma, where he had been a professor since 1965. He has
published several books on quantum chemistry, linear algebra, and quantum
similarity as a result of his teaching and research experience in these fields. He
has been working on the Hückel method, electrostatic molecular potential, and
self-consistent field and perturbation theories, as well as working on the
application of elementary Jacobi rotations in quantum chemistry. In 1980, he
introduced the concepts structuring the theoretical body associated with quantum
similarity and quantum quantitative structure-property relationships. Several of
his contributions are aimed at integrating quantum chemistry with appropriate
algorithms that can be automatically programmed for computations in parallel.
Starting with a first paper in 1965, which also was the first quantum chemistry
paper ever published in Catalonia, he has published more than 200 papers on
the aforementioned subjects, including several contributions to explain his group’s
current scientific work. He has been honored with the Narcı́s Monturiol medal
of the Generalitat de Catalunya.

Acc. Chem. Res. 2002, 35, 289-295

10.1021/ar010048x CCC: $22.00  2002 American Chemical Society VOL. 35, NO. 5, 2002 / ACCOUNTS OF CHEMICAL RESEARCH 289
Published on Web 04/04/2002



literature, a delay to enlarge its applicability perspectives.
Another possibility of the low application profile of DF
may be reflected in the fact that literature trends have
usually dealt with chemical systems per se, but very
seldom in relationship with other parent structures.
Chemical language, however, is full of expressions that
compare two or more molecules, and experimental chem-
istry, since the initial analysis of the atomic properties,
which has led to the construction of the periodic table of
the elements, tends to produce information about chemi-
cal properties by reasoning and by comparative thinking.

Admitting the von Neumann,17 Born,18 and Dirac19

interpretations of quantum mechanics, one can accept
that the DF of a chemical system, constructed in a precise
internal energy state, is the recipient of all the observable
information, which can be extracted from such a system.
Then it becomes logical to consider the possibility of using
quantum mechanical DFs to develop the tools that will
allow the comparison of two or more molecules.

DF can be considered at the same time as functions
and operators.20 Thus, nothing prevents consideration of
the way two DFs, attached to different systems or states,
can be employed to extract the numerical figures, meaning
the similarity degree between the compared systems. This
can be performed like a statistical expectation value
technique, associated with the manner for obtaining it
within a unique system state.

Similarity Measures. Once two molecular systems are
known, the definition of a quantum similarity measure
(QSM) becomes effortless to construct. A comparison of
two molecules can be easily constructed using their
corresponding DFs. Both DFs can be multiplied and
integrated over the respective electronic coordinates in a
convenient domain, weighted by a positive definite opera-
tor Ω(r1,r2). That is,

This rule, which when the operator is chosen as the
Dirac’s function, δ(r1 - r2), is called an overlap QSM,
permits a large number of applications21-24 and generali-
zations.12,25 Another widely explored possibility26-28 is the
use of Coulomb operator, |r1 - r2|-1, defining a Coulomb
QSM. Integral 1, because of the presence of the positive
definite operator and DF, always results in a positive
definite real number. When relating a system to itself, by
means of eq 1, that is, when computing zAA, a quantum
self-similarity measure (QS-SM) is obtained. Practical
computation of the integral (1) may become unaffordable
when the involved DFs correspond to large molecules or
have been calculated at high computational levels. To
overcome this problem, the promolecular atomic shell
approximation (PASA)29-31 has been defined, modeling the
ab initio DF as a linear combination of 1S functions,
decreasing in this manner the computational require-
ments and enlarging the potential applications of QSM.

Provided a set of N molecules, there is always the
possibility of computing the whole array of QSMs between
molecular pairs, producing a symmetric (N × N) matrix:

Z ) {zIJ}, the similarity matrix (SM) of the set. Each
column (or row) of the SM: zI, can be considered as the
collection of all the QSMs between the I-th molecule and
each element of the set, including itself. Consequently,
every vector zI is interpreted as a discrete N-dimensional
representation of the I-th structure. Such collections of
vectors can be considered as a set of molecular descrip-
tors.

However, the SM column collection does not constitute
just another set of object descriptors, such as those
generally used to theoretically describe a given molecule.
From the previous discussion, it can be stated that every
descriptor zI is:

1) Universal in the sense that it can be obtained from
any molecular set and for any molecule in the set.

2) Unbiased, because in the building process, there are
no other choices than those provided by the knowledge
of the involved DFs and the QSMs, as described in eq 1.

QSMs can be transformed in order to enlarge their
application, as will be discussed next.

Similarity Indices. QSM, like any of the off-diagonal
elements of the SM, zAB, involving the QSM between
molecules A and B, can be easily transformed into a
number lying within the interval (0;1], just by using

producing the so-called Carbó similarity index (CSI).32,33

The CSI, as defined in eq 2, corresponds to a cosine of
the angle subtended by the involved DFs, considered in
turn as vectors. When the CSI approaches unity, the
involved molecules can be considered to be more similar,
and as the CSI approaches 0, the more dissimilar the
compared structures become. The exact unity value is only
obtained when A ) B.

Stochastic Transformation. Besides CSI, another pos-
sible scaling can be performed by means of a stochastic
transformation.34 Such SM transform can be defined by
means of

providing a stochastic SM, S ) {sAB}, where the sum of
the elements of each row has been used as a scale factor.
This procedure creates an alternative nonsymmetric SM
whose columns can also be used as new descriptors for a
given molecular set and can be interpreted as discrete
probability distributions.

Fundamental Quantum QSAR Equation. The possibil-
ity opened by the SM manipulation over a molecular set,
although appealing, would constitute a very limited ap-
plication of the QSM framework. The praxis of the
theoretical findings has conducted the application of the
SM, considered as a set of structural descriptors, to QSPR
model construction.35 From the initial results, the possible
existence of a sound reason for the general applicability
of both QSMs or the CSI set has been deduced to obtain

rAB )
zAB

xzAAzBB

(2)

sAB ) zAB(∑
C)1

N

zAC)-1 (3)

zAB ) 〈FA|Ω|FB〉 ) ∫∫FA(r1) Ω(r1,r2)FB(r2) dr1 dr2 (1)
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QSPR models that are quite accurate. It became apparent
that such a relationship was the consequence of a simple
quantum mechanical application involving the concept
of the expectation value attached to a general property.
Following quite a lengthy procedure and taking into
account the previous definitions, it can be shown that the
expectation value of any given property can be written in
terms of a linear combination of QSMs.36

That is, imagine a structure A and the expectation value
of a given property for this molecule: 〈πA〉, which can be
associated with an experimental value of the given prop-
erty. The following approximate relationship can be
found.37

where the set {zIA} ) zA is just constructed by the
collection of the QSM N-dimensional descriptor of system
A. In eq 4, there is also present another N-dimensional
vector, {wI} ) w, which is a set of coefficients to be
computed to optimally fit all the known property values
of the set. This is done in the same way as the problem is
solved in empirical QSPR models. There are no math-
ematical differences present between eq 4 and the usual
QSPR models except the descriptor origin; however, the
fundamental Q2SPR eq 4 can be deduced from the QSM
definitions, as in eq 1, plus the definition of the quantum
mechanical expectation value concept. In this sense, not
only a linear relationship between molecular properties
and generally constructed, unbiased molecular descriptors
is proved in this context, but also eq 4 provides the
possible existence of a causal relationship between prop-
erties and QSM descriptors. Thus, if in order to obtain
the vector w coefficients, some statistical procedure has
to be sought, usually related to a least-squares technique
or some connected procedures,38 the final Q2SPR model
contains the seed of a causal connection, obtained by
means of quantum theory, between the structure, repre-
sented by QSM, and the properties of any molecular set.

Application Examples: Modeling a Steroid Set
To provide a visual picture of the use of MQSM in the
QSAR field, the Cramer’s 31 steroid set39,40 will be studied

using two different methodologies dealing with MQS as
the starting point. This molecular set has been widely
employed as a benchmark to test novel QSAR pro-
cedures39-42 and constitutes a suitable example for dem-
onstration purposes. The biological activity related to this
molecular set, listed in Table 1, is the affinity for corti-
costeroid binding globuline (CBG).

This molecular set will be studied using two different
protocols:

- Full MQSM, using regularly fitted DF29-31 weighted
by the Coulomb operator, and

- Topological quantum similarity indices.
Statistical Considerations. Statistical procedures, like

multiple linear regression (MLR)43 and partial least squares
(PLS),44 are used here to construct QSAR models. All
correlations are evaluated by means of goodness-of-fit
(r2),45 standard deviation of errors in prediction (s)45 and
goodness-of-fit in cross-validation (rcv

2 ) from a leave-n-
out procedure.46,47 The authors prefer the usage of rcv

2

instead of the r2 for prediction (q2).45 This choice was made
because of the existence of negative values in the q2

definition48,49 and, in addition, because of ambiguous
implementations of this index2.

Data Set. Molecular geometries used here were sup-
plied by Gasteiger’s research group, who showed39 that
the original work40 contained some mistakes. The experi-
mental activities are due to Dunn.42

Example I: Full MQSM Using a Coulomb Operator. The
first results involve the use of a Coulomb operator in
definition 1. The necessary molecular pairwise superposi-
tions were computed according to the TGSA algorithm50

(see Figure 1), which aligns the molecules according to
their maximal common substructure and permits the easy
computation of the optimal QSM. The molecular elec-
tronic DF was constructed from previously computed
parameters according to the PASA29-31 fitted to the 3-21G
basis set. All measurements among the 31 steroids were
collected into a SM and scaled using a CSI, as in eq 2.
The columns of the new SM were used as molecular
descriptors in a PLS44 routine to construct the QSAR
models.

A number of four descriptors was chosen among a set,
made of eight, to construct a final QSAR model, for

Table 1. Structures and Biological Activity for a Set of 31 Steroids

N steroid CBG N steroid CBG

1 aldosterone -6.279 17 pregnenolone -5.225
2 androstanediol -5.000 18 hydroxypregnenolone -5.000
3 androstenediol -5.000 19 progesterone -7.380
4 androstenedion -5.763 20 hydroxyprogesterone -7.740
5 androsterone -5.613 21 testosterone -6.724
6 corticosterone -7.881 22 prednisolone -7.512
7 cortisol -7.881 23 cortisolacetate -7.553
8 cortisone -6.892 24 4-pregnene-3,11,20-trione -6.779
9 dehydroepiandrosterone -5.000 25 epicorticosterone -7.200

10 deoxycorticosterone -7.653 26 19-nortestosterone -6.144
11 deoxycortisol -7.881 27 16a,17a-dihydroxyprogesterone -6.247
12 dihydrotestosterone -5.919 28 17a-methylprogesterone -7.120
13 estradiol -5.000 29 19-norprogesterone -6.817
14 estriol -5.000 30 2a-methylcortisol -7.688
15 estrone -5.000 31 2a-methyl-9a-fluorocortisol -5.797
16 etiocholanone -5.225

〈πA〉 ≈ w1z1A + w2z2A + ... + wAzAA... + wNzNA (4)
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example,

where {fi} stands for the factors derived of the application
of the PLS routine to both the descriptor matrix and the
activity data, and rcv

2 is the goodness-of-fit of the predicted
values arising from a leave-one-out procedure. Results of
model 5 can be visualized in Figure 2, where cross-
validated versus experimental values are plotted. To verify
the model validity, a random test51 has been carried out,
randomly permutating the activity vector and constructing
models between this random-ordered data and the whole
original SM. This procedure, repeated 1000 times, presents
the following results:

Thus, the random models do not achieve significant
results. It should be noted that the value of rcv

2, which
may arise from a negative value of rcv, reinforces the
nonvalidity of the permutated models, because it implies
that those correlations are inverting the data tendency.
Figure 3 presents random test results, where a clear
separation between original and random models can be
distinguished.

Example II: Topological Quantum Similarity Indices.
Another successful QSAR/QSPR2-6 approach relies on the
topological paradigm.52-55 Within this classical approach,
the molecular skeleton is represented by means of an
undirected graph.55,56 This graph is codified in terms of a
topological matrix (TM),56-58 T, also called connectivity or
an adjacency matrix. The TM is symmetric and has
dimension nXn, n being the number of atoms in the
molecule. The element Tij is 1 if the related atoms i and j
are connected by a graph line and is 0 otherwise. Several
numerical indices can be defined from the information

contained in the TM. Numerical correlation between
classical topological indices and physicochemical or bio-
logical properties usually yields acceptable results.52 Un-
fortunately, spatial and chemical information may be
partially lost in TM.

The topological quantum similarity indices theory
extends classical topological theory25 by redefining the TM
in different ways. This is accomplished considering mea-
sure 1, assuming that indices A and B refer to atoms in a
molecule. In this way, if a density function is attached to
each atom,25,56 integral 1 allows definition of different
kinds of TMs, depending on the nature of the operator
Ω. For a molecule with n atoms, a symmetric nXn
topological quantum similarity matrix (TQSM), Z ) Z(Ω)
) {Zij}, can be obtained by collecting the measures of type
1 coming for every atomic pair.

FIGURE 1. Superposition of aldosterone and androstanediol using
TGSA.50

CBG ) 1.196f1 + 10.79f2 + 17.62f3 + 7.993f4 (5)

[r2 ) 0.824 rcv
2 ) 0.727 s ) 0.447 ]

mean r2 ) 0.321 mean rcv
2 ) 0.076 (rcv ) -0.095)

max r2 ) 0.644 max rcv
2 ) 0.398

FIGURE 2. Predicted vs experimental values for a set of 31 steroids
using Coulomb MQSM.

FIGURE 3. Random test for a QSAR model of a 31-steroid set:
original point, +; permuted models, b. (The rcv

2 from negative values
of rcv have kept the sign for clarity.)
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Given a TQSM, an equivalent computation, as in the
classical case, can be considered in order to produce the
quantum topological indices (TI).14,59 This point of view
allows a redefinition of the classical TIs: Wiener index;
Wiener path number; Randić, Schultz, Balaban, and
Hosoya indices; Harary number; the generalized con-
nectivity indices of order o and kind k (oøk) of Kier and
Hall;54 and so on.52,56 In the TQSM framework, the
topological distance matrices can be substituted by the
3-dimensional Euclidean distances.14,56 The full sets of
redefined parameters are called topological quantum
similarity indices (TQSI), and their origin and the com-
putational details are given in references 14 and 59.
Consequently, the general QSM theory leads to the
generation of new ab initio molecular descriptors. Several
interesting results have been obtained concerning the
numerical correlation between indices derived from the
TQSM and molecular properties.14,25,59

In the present example, two kinds of TMs have been
considered: the classical one, T, and the TQSM Cioslowski-
like matrix C, defined as C ) {Sij

2}, where Sij is the
elements of the overlap matrix, which are calculated
between pairs of spherical functions centered at atoms i
and j.59 For every TM, a set of 40 indices were computed,
and the full data was sent to a multiple linear cross-
validation45,60 and regression program.

In the present application example, all of the combina-
tions of 2, 3, 4, and 5 TQSIs entering a multiple linear
model were generated, and the descriptor sets attached
to the highest values of the rcv

2 are reported in Table 2.
It is also assumed that a leave-one-out procedure

overestimates the predictive capabilities of the tested
method,61,62 so new trends are focused on obtaining results
attached to leave-n-out procedures.46 It has also been
demonstrated that when performing linear cross-valida-
tion procedures, it is straightforward to obtain the pre-
dicted values in a general leave-n-out algorithm.63

The final QSAR model using four topological param-
eters is presented in eq 6. This model involves three kinds
of connectivity indices: path (p), cluster (c) and path-
cluster (pc)54 of diverse orders.

Table 2 presents the correlation coefficients for the
cross-validation computations that have been carried out
for the Cramer set. Leave-n-out tests (n ) 1,5) have been
performed. Figure 4 shows the 4-descriptors model result,
according to eq 6, arising from a leave-2-out procedure.
In general, after a leave-n-out test has been performed
over a molecular family, each molecule has an attached

set of Np ) (N - 1
n - 1 ) predicted values. Except in the case

of a leave-one-out test (for which Np ) 1), a statistical
distribution of predicted values can be analyzed. This
distribution may be considered to be Gaussian. In Figure

4, the circles indicate for each molecule the mean value
of the corresponding predictions, and the bars in each side
are as long as three times the data standard deviation
attached to the method dispersion.

Finally, a random test has also been performed, yield-
ing results similar to the previous example.

Conclusions
It has been shown how the general theory of quantum
similarity fundamentals, in some of its extensions, and an
application to QSAR theory produces a Q2SAR equation.
Despite the general, abstract, and mathematical underly-
ing concepts, numerical and “front end” results can be
also reached. In this way, the whole review presented here
embraces both the theory and its practical implementa-
tions.

As an application example, the Crammer 31 steroids
set has been tested within two different, quantum-
similarity-related, methodologies.The obtained results are
satisfactory, and according to the resulting statistical
parameters, the presented QSAR models can be consid-
ered sufficiently valid and comparable to other literature
proposals.39-41

This research has been supported by the Investigation Project
No. SAF2000-0223-C03-01 from the Spanish Ministerio de Ciencia

CBG ) - 11.309 3øc(T)

- 1.629 4øp(T) + 6.857
+ 0.431 7øpc(T) + 7.243 3øc(C)

(6)

[r2 ) 0.867 rcv
2 ) 0.803 s ) 0.475 ]

FIGURE 4. Representation of the predicted versus the experimental
values obtained for the family of 31 steroids and according to a linear
model involving 4 optimized descriptors following a leave-2-out
procedure. Error bars are as long as 3σ, the standard deviation
attached to a Gaussian distribution of Np ) 30 points.

Table 2. Computed rcv
2 Values for Linear Models

Involving Several Descriptors and Obtained
Following Leave-n-Out Procedures

n in the leave-n-out procedure

no. descriptors 1 2 3 4 5

1 0.394 0.394 0.394 0.394 0.394
2 0.551 0.551 0.551 0.551 0.551
3 0.593 0.592 0.591 0.590 0.590
4 0.803 0.803 0.803
5 0.848 0.848
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